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Abstract

The risk due to software vulnerabilities will not be
completely resolved in the near future. Instead, putting
reliable vulnerability measures into the hands of end-
users so that informed decisions can be made regard-
ing the relative security exposure incurred by choosing
one software package over another is of importance.
To that end, we propose two new security metrics,
average active vulnerabilities (AAV) and vulnerability
free days (VFD). These metrics capture both the speed
with which new vulnerabilities are reported to vendors
and the rate at which software vendors fix them.

We then examine how the metrics are computed
using currently available data sets and demonstrate
their estimation in a simulation experiment using four
different browsers as a case study. Finally, we discuss
how the metrics may be used by the various stakehold-
ers of software to aid usage decisions.

Index Terms

security, metrics, experimental security

1. Introduction

Every week new software vulnerabilities are dis-

covered in many applications. Various measurements

of this effect have been proposed, but comparisons

between similar products from different vendors or

different products with the same vendor have been

difficult. We propose two new end-user focused metrics

that allow for cross product or cross vendor com-

parison. The metrics are based on measurements of
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Figure 1. Vulnerability lifetime model

the number and rate of vulnerabilities reports, and

the patch development rate for individual software

products. These measurements are related to events

which are part of the vulnerability life cycle.

To quantitatively characterize the time between

events in the vulnerability life cycle model, depicted

in Fig. 1 and fully described in [1], ideally one would

measure the time from discovery of a flaw until the

time all end-user machines have been patched to ad-

dress the issue. In practice, this has been demonstrated

to be difficult since the times and dates for most events

along the life cycle are not credibly and verifiably

known.

For instance, it is difficult to accurately record the

initial discovery of a vulnerability (a), even for a

discoverer because it is possible the vulnerability has

been independently discovered by another party [2].

On the other end of the life cycle, it has been shown

that applying security patches (f ) involves a half-life

behavior and finally tapers off at approximately 5–10%

of machines that will remain unpatched [3].

In practice, we can measure the time from when

a vulnerability is reported to a vendor (c) until the

time when a patch is issued by that vendor (e). For

instance, ZDI and iDefense both buy vulnerabilities

from the security research community and then report

them to the appropriate vendor. In doing so, they record

the time from report to patch release. Essentially, this

leaves us with only two stages in the vulnerability life



cycle that can be accurately known:

• birth: vulnerability reported to the vendor (c), and

• death: patch issued by the vendor (e).

For this paper we define vulnerability lifespan to

be the time a vulnerability has spent in the vendor’s

queue. This is the time between the birth and death of

the vulnerability. A vulnerability is considered “active”

from the time it is reported to or discovered by

the vendor until a patch is supplied by the vendor.

Metrics based on the number of “active” vulnerabilities

in a vendor’s queue can be used to aid quantitative

estimation of end-user exposure.

Simply examining the raw quantity of vulnerabilities

reported for a product in databases like the National

Vulnerability Database (NVD) or the Open Source

Vulnerability Database (OSVDB) neglects the effect of

the vendor response time to addressing vulnerabilities.

Likewise, examining the lifespans of vulnerabilities

from sources such as the Zero Day Initiative (ZDI) or

iDefense neglects the number of vulnerabilities. New

metrics which combine both quantity and lifespan of

vulnerabilities for individual products would be useful.

In this paper, we propose two new metrics that

capture the effect of the number and rate of new

vulnerabilities being found and their lifespans. The

first metric, average active vulnerabilities (AAV), is the

median number of software vulnerabilities which are

known to the vendor of a particular piece of software

but for which patch has been publicly released by

the vendor. The second metric, vulnerability free days

(VFD) captures the probability that a given day has

exactly zero active vulnerabilities.

1.1. Summary of contributions

We focus on the end-user software vulnerability

exposure from individual products by defining two new

end-user metrics and we use these two metrics in a case

study of four browsers to discuss and demonstrate that:

• end-user vulnerability exposure should be consid-

ered as a combination of lifespans and vulnerabil-

ity announcement rates (not lifespans alone), the

proposed metrics capture both aspects;

• the two metrics may be easily estimated with

reasonable accuracy, and thus are usable by end-

user security practitioners and decision makers;

• individual products with the same functionality,

e.g. browsers, may yield distinctly different end-

user vulnerability exposure levels.

1.2. Organization of Paper

The rest of this paper is organized as follows. In

Section 2 we provide an overview of vulnerability

stakeholders. In Section 3 we expand on the two

new end-user focused metrics and then in Section 4

we collect data on four browsers and examine the

results of applying our metrics. Section 5 discusses

a proposed use case for the metrics, and Section 6

describes related work in the area. Finally, Section 7

provides conclusions and areas for future work.

2. Overview of Vulnerability Stakeholders

It is important to consider the various stockholders

in software vulnerabilities because each stakeholder

observes different effects as vulnerabilities are dis-

covered, reported, and then mitigated. This section

discusses each stakeholder in the process.

There are three primary stakeholders in the vulner-

ability disclosure process:

• vendors who produce software products,

• vulnerability researchers: individuals or firms,

who actively search for vulnerabilities or buy

them, and then report the vulnerability to the

vendor, and

• end-users: enterprises or individuals, who are con-

fronted with the potential for loss from vulnera-

bilities.

Each of these three stakeholders will be discussed in

the following subsections.

2.1. Software vendors

Software products have vulnerabilities. The absolute

number of vulnerabilities within any given software

product is currently not measurable with any degree

of confidence [4], [5]. What can be determined, and

what software vendors must confront, is the number

of vulnerabilities being reported and how long it takes

to produce a patch. The length of time it takes to

produce a patch is directly under the control of the

vendor and can be directly influenced by the quality

and quantity of resources devoted to the task. It is

a business decision, and each vendor (perhaps each

vendor’s product line) has their own unique costs and

benefits to consider.

The number of vulnerabilities being reported for

the product is, at best, only indirectly influenced by

the vendor. The vendor can adopt some form of

more secure software development process such as

Microsoft’s Secure Development Life Cycle [6], which



in principle would reduce the number of vulnerabilities

which would have otherwise occurred. But the vendor

can control neither the level of attention of nor the tools

available to vulnerability researchers. As the quantity

and quality of researchers looking at the deployed

product increases, we would expect the number of

vulnerabilities reported to also increase. As the tools

available to researchers for aiding the identification

of vulnerabilities improve or represent new types of

attack, the number of vulnerabilities being reported

would also be likely to increase.

From a business cost and end-user use perspec-

tive, vendors would prefer that vulnerabilities never

be announced or even found. However, they have

little opportunity to control the release of vulnerability

information unless they develop contracts with those

researchers identifying and demonstrating vulnerabil-

ities. While this has occurred, there are difficulties

such as the fact that buying the information does not

imply control; for example, other researchers may find

the same vulnerability. Consequently, vendors must

balance resources expended to develop and deploy

patches for vulnerabilities against the potential losses

of revenue due to reduced end-user choice of their

product.

2.2. Vulnerability researchers

Vulnerability research firms actively search or buy

vulnerabilities for some purpose. In this paper we are

only addressing the researchers who intend to report

vulnerabilities to the vendor. The purpose may be

to gain notoriety in the hopes of increasing business

volume, develop relationships which lead to increased

recognition and security related business opportunities,

or perhaps, altruistically, to improve the security of

software products. In many cases recognition of the se-

curity firm, whether organization or individual, seems

to be important.

2.3. End-users

The end-users of software products which have

vulnerabilities that have been discovered but remain

unpatched expose themselves or their firms to risk. Ide-

ally, end-users could know how many vulnerabilities

exist in the software products they are using, determine

the probability they will be exploited, and effectively

determine the potential losses. But as discussed in Sec-

tion 1 this information is neither dependably available

nor verifiable. So new techniques are needed to help

end-users assess their risk.

Vulnerabilities which have been publicly announced

help end-users make rational decisions about whether

to apply a patch if available, institute a workaround

such as disabling the service or reconfiguring the pro-

cess, or accept the risk. Vulnerabilities which have not

been privately reported to the user, publicly announced,

or mitigated by a third party such as Tippingpoint

supplying IDS signatures for vulnerabilities they have

purchased, leave the end-user relatively blind to the

particular risk from these vulnerabilities. Vulnerabili-

ties which have been discovered and reported to the

vendor but not yet fixed constitute a risk which is

mostly undetermined at this time but may present

opportunity for improved estimation. The end-user

exposure to these software vulnerabilities are discussed

in detail in Section 3.

3. Two End-User Exposure Metrics

It is useful to provide all stakeholders (vulnerability

researchers, vendors, and end-users) with security met-

rics which support accountability and decision making.

To this end, we define two vulnerability exposure met-

rics as proxies for a product’s contribution to an end-

users level of vulnerability exposure. The first metric,

Vulnerability Free Days (VFD), is the percent of days

in which the vendor’s queue of reported vulnerabilities

for the product is empty. The second metric, Average

Active Vulnerabilities per day (AAV), is the median

number of vulnerabilities per day in a vendor’s product

queue.

Fig. 2 shows a hypothetical example. At the top,

vulnerabilities are reported and patched as time moves

from left to right. The bottom shows the running sum

of active vulnerabilities. If we take each horizontal di-

vision as a day, there are 3 days with no vulnerabilities,

6 days with exactly 1 active vulnerability, 17 days with

2, and 4 days with 3. The AAV is the median number

of active vulnerabilities: 2. The VFD is 3/30 = 10%.

These metrics are primarily intended for consump-

tion by end-users, particularly those in charge of

making policy decisions as to which software vendors

and products should be purchased, or which should

form part of an “allowed use” policy. Comparative

evaluation of software products, or vendors as a whole,

can be expressed by calculating and examining their

AAV and VFD values. A product with a small average

number of active vulnerabilities should have some

preference over one with a higher average. The inverse

is true with the vulnerability free days metric where a

large number is preferred to a small number.

The information needed to calculate these two met-

rics for a product are the lifespan of each reported



active vulnerabilities # days percent

0 3 10%

1 6 20%

2 17 57%

3 4 13%

AAV 2

VFD 10%

Figure 2. Example of AAV and VFD calculation

vulnerability, and the number and rate of vulnerability

disclosures.

While not currently easy to obtain, in principle this

information would be easy to produce and verify by

the vendors. The data could also be verified by the

independent researchers who reported vulnerabilities,

and the vendors could be induced to make the infor-

mation free and easily accessible if end-user pressure

is brought to bear.

4. Metrics Case Study

The proposed VFD and AAV vulnerability exposure

metrics were estimated for the browsers Apple Sa-

fari, Google Chrome, Mozilla Firefox, and Microsoft

Internet Explorer. To develop the metrics for each

browser, data was collected in order to characterize

their respective vulnerability lifespans, and number and

rate of vulnerability disclosures. After, some success

in characterizing this information for each browser,

a simulation was written and used to estimate the

metrics. The possibility for quick and easy short cuts

for approximating the metrics are discussed at the end

of the case study (Section 4.4).

In particular, we used several data sources to esti-

mate the:

• arrival rate of vulnerability announcements,

• number of vulnerabilities announced, and

• lifespan of vulnerabilities.

The arrival rate of vulnerability announcements is

the time between two different announcements of vul-

nerabilities for a given product. The number of vulner-

abilities announced represents the integral number of

vulnerabilities disclosed as part of a specific announce-

ment. It is common that more than one vulnerability for

a given product is announced on a given announcement

day (e.g. Microsoft “patch Tuesday”). The lifespan of

a vulnerability is the same as defined previously. It

begins when the vulnerability is reported or discovered

by the vendor, and ends when the vendor supplies a

patch.

4.1. Data Sources

Data was gathered from the National Vulnerability

Database (NVD) [7], iDefense Vulnerability Contribu-

tor Program (VCP) [8], and the Zero Day Initiative

(ZDI) [9]. The NVD data was used to characterize

the arrival rate of vulnerability announcements and the

number of vulnerabilities announced per instance. The

ZDI and iDefense data were used to characterize vul-

nerability lifespans. In all cases, descriptive statistics

are provided to give an idea of the behavior of the data

harvested from each source.

The NVD consists of approximately 46,000 unique

vulnerabilities enumerated by an identifier called

a Common Vulnerability Enumeration (CVE). The

database is freely available and further breaks down

vulnerabilities by vendor, product, version, etc. (Com-

mon Platform Enumeration, CPE). For our research,

the XML data feed provided by NVD was downloaded

and imported into an SQL database so that our de-

sired queries could be executed. The data was used

for computing the arrival rates of vulnerabilities, and

determining the number of vulnerabilities disclosed at

each announcement.

The National Vulnerability Database has been

widely criticized for the inaccuracies it contains. For

example, [10]–[12] all describe various inconsistencies

in the NVD and other vulnerability databases. In this

paper, we are primarily describing the concept and

potential usage of our metrics, so we are less concerned

with the absolute consistency of the existing sources.

To minimize the effects of the erroneous data in the

NVD, the time span of analysis is limited for each

product and only two fields were used: the Common

Platform Enumeration (CPE) and the “first published”

date. The vendor and product fields of the CPE were

used to discriminate between products. Other parts

of the CPE were ignored, except when making the

distinction between Internet Explorer versions. The

“first published” field of the NVD is used to examine

the arrival rate of announcements and the number of

vulnerabilities announced per day.

Limiting the dates for which we collected vulnera-

bility data used for each product allows us to ignore the

start-up effects of the NVD. As pointed out in [12], the

early years of the NVD were unstable. Table 1 shows

the time span considered for each product and the



Table 1. Number of points and time span for each
product in NVD.

Product N Time Start Time End

MS Internet Explorer 209 Jan 1, 2001 Jun 6, 2010

Mozilla Firefox 113 Jan 1, 2004 Jun 6, 2010

Google Chrome 30 Dec 12, 2008 Jun 6, 2010

Apple Safari 92 Jun 22, 2003 Jun 6, 2010

MS Internet Explorer 6 180 Jan 1, 2001 Jun 6, 2010

MS Internet Explorer 7 85 Jan 1, 2004 Jun 6, 2010

MS Internet Explorer 8 20 Jan 1, 2009 Jun 6, 2010

MS Internet Explorer announcement arrival

Days until next announcement
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Figure 3. Histogram of Internet Explorer vulnera-
bility announcement rates.

number of data points available in the time span. Be-

fore 2004, Mozilla Firefox was a product of Netscape

Communications and tracking vulnerabilities between

the Netscape Communicator and Mozilla Firefox prod-

ucts is difficult. Google Chrome was introduced in

December 2008, and Apple Safari was released in

January of 2003. In addition to Microsoft Internet

Explorer as a whole, individual versions are broken

out separately.

4.1.1. Vulnerability Announcements. Fig. 3 shows

the histogram of vulnerability announcements for Mi-

crosoft Internet Explorer. The other products in this

study have very similar graphs, i.e. roughly exponen-

tial in shape, though the mean and median values

differ substantially. Table 2 summarizes the statistical

properties of the announcement rate. If one were to

choose a web browser simply by the arrival rate of

new vulnerability announcements, one would choose

Apple Safari because the expected time between new

vulnerability announcements is slightly over 25 days

(more than 3 weeks), and the other browsers are less

than 3 weeks. Firefox does not fare well at all with

new vulnerabilities announced about 12 days apart.

4.1.2. Number of Announcements per day. How-

ever, because arrival rate is actually an announcement

of at least one vulnerability and possibly more, we ex-

amine the distribution of the number of vulnerabilities

Table 2. Properties of vulnerability announcement
rates (days).

Product mean median σ min / max

MS Internet Explorer 14.95 9.0 16.3 1 / 98

Mozilla Firefox 12.09 10.0 10.5 1 / 51

Google Chrome 17.17 10.5 18.4 1 / 80

Apple Safari 25.47 15.5 28.5 1 / 125

MS Internet Explorer 6 17.36 10.0 18.6 1 / 97

MS Internet Explorer 7 23.14 13.0 41.7 1 / 365

MS Internet Explorer 8 21.15 14.0 16.5 1 / 54

Mozilla Firefox vulnerabilities per announcement

Vulnerabilities per announcement
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Figure 4. Histogram of Firefox vulnerabilities an-
nounced on announcement day.

on an announcement day. The distribution for Firefox

is shown in Figure 4. The other browsers in this study

follow a similar shaped curve, so the graphs are omit-

ted. Table 3 summarizes the number of vulnerabilities

per announcement. Internet Explorer and Safari are

close to 2 vulnerabilities per announcement on average

where as Firefox averages more than 3 vulnerabilities

per announcement.

4.1.3. Vulnerability Lifespans. The ZDI and iDe-

fense databases consist of vulnerabilities for which

the corresponding firm has paid a security researcher

for a vulnerability. ZDI or iDefense then works with

the affected vendor to responsibly disclose the vul-

nerability. Both companies provide free and online

access to the data including the date the company

reported the vulnerability to the vendor and the date

Table 3. Properties of vulnerability announcement
rates (number of announcements).

Product mean median σ min / max

MS Internet Explorer 2.105 1.0 2.075 1 / 17

Mozilla Firefox 3.158 1.0 3.811 1 / 16

Google Chrome 2.871 1.0 3.667 1 / 19

Apple Safari 2.279 1.0 4.108 1 / 36

MS Internet Explorer 6 2.188 1.0 2.121 1 / 15

MS Internet Explorer 7 1.733 1.0 1.332 1 / 6

MS Internet Explorer 8 1.221 1.0 1.221 1 / 5



Table 4. Distribution of ZDI/iDefense lifespans for
each browser.

Product N
mean σ min / max

(days) (days) (days)

MS Internet Explorer 33 182.1 106.9 47 / 489

Mozilla Firefox 20 91.6 50.7 11 / 184

Google Chrome 5 114.6 41.3 56 / 146

Apple Safari 10 106.8 55.5 20 / 210
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ECDF of browser vulnerability lifespans

Lifetime (days)

F(
x)

IE
Chrome
Firefox
Safari

Figure 5. Empirical cumulative distribution func-
tions of browser lifespans.

at which the vulnerability was publicly disclosed. We

use the collected data for computing the distribution

of vulnerability lifespans.

Table 4 shows the descriptive statistics for the

distribution of the ZDI and iDefense lifespan data.

Firefox has the clear lead at 91.6 days to address

vulnerabilities and Internet Explorer lags far behind

with a mean of 182 days to address vulnerabilities.

Fig. 5 shows a diagram of the empirical cumulative

distribution functions of the lifespans for each browser.

For each observed sample lifespan, the graph rises

1/N at that point along the horizontal axis. A rapid

vertical rise shows a clustering of observed lifespans

and small slope shows few observed lifespans of that

value. Fig. 5 is a more detailed examination of the

distribution information in Table 4. For instance, MS

Internet Explorer is shown to have an overall slower

distribution of lifespans; part of this is caused by a

small number of high value lifespans (> 450 days).

The other three browsers have similarly positioned and

shaped lifespan distributions.

4.2. Model for Simulation

To facilitate estimation of the AAV and VFD met-

rics, a model and corresponding simulator were con-

structed. We employ a simulation because the exact

data are not known and a closed form solution based

on the empirical distributions is not yet available

(though an approximation is found and discussed in

Section 4.4). To generate a single simulation run,

time is set to t0 and a sample is taken from the

announcement arrival rate distribution for the browser

under study, Δt. Then, at time t = t0 +Δt, a sample

is taken from the distribution of the number of vul-

nerabilities announced on an announcement day. This

determines how many vulnerabilities are terminated

with the announcement, n. For each i ∈ 1, . . . , n, a

sample is taken from the lifetime distribution, li.
For the discrete event simulation, two events are

generated:

• a vulnerability birth at time t− li and

• a vulnerability death at time t.

Finally, t0 is set to t and event generation continues

until t0 > tend where tend is the simulated time.

To compute the AAV metric, the discrete number

of vulnerabilities estimated to be in the vendors queue

each day was put in rank order and the probability of

each was computed. Finding the median is then a mat-

ter of finding number of vulnerabilities corresponding

to the 50th percentile. The VFD metric is calculated

by counting the number of days in the simulation

with exactly zero vulnerabilities, then dividing by

the simulation days to obtain the probability of no

vulnerabilities. To minimize simulation warm-up and

wind-down, the simulation was run for 100 different

random seeds and over a simulated time of 100 years.

This simulation model is a G/G/∞ queuing model:

generalized arrival process, generalized service time,

and an infinite number of servers. The arrival process

is complicated by the fact that multiple vulnerabilities

can be announced at a single point in time. Even if the

underlying data could be mathematically modeled, the

authors believe that there is no closed form solution

for the AAV or VFD metrics.

Various statistical models were tried for each of the

different PDFs required by the simulation. Since the

model parameters were not equally well characterized

by the statistical models, the simulations were run

using the raw data collected for each parameter as

a discrete distribution function. The results of the

simulations were used to calculate the VFD and AAV

for each browser.

4.3. Simulation estimates of AAV and VFD

For estimating the AAV metric, the arrival rate of an-

nouncements, number of vulnerabilities disclosed per

announcement, and the vulnerability lifespans are ran-

dom variables distributed as described in Section 4.1.3.



Figure 6. Percent of days with the given number
of vulnerabilities in a vendors queue

Table 5. Browser Average Active Vulnerabilities

Browser AAV σ

Apple Safari 9.55 8.58

Google Chrome 19.1 11.3

Mozilla Firefox 23.9 11.1

Internet Explorer (all) 23.2 8.94

Separate treatment of IE versions

Internet Explorer 6 20.7 8.70

Internet Explorer 7 12.2 6.90

Internet Explorer 8 13.5 4.76

The distributions were derived from the collected data.

The simulation provided the results shown in Fig. 6.

The horizontal axis is the number of vulnerabilities in

a vendors queue and the vertical axis is the percentage

of days which had that number of vulnerabilities. The

AAV metric was then calculated as the median number

of active vulnerabilities.

The AAV estimate for each of the four browsers

was 9.55 for Safari, 19.1 for Chrome, 23.9 for Firefox,

and 23.2 for Internet Explorer (this data is summarized

in Table 5). So the estimated vulnerability exposure,

AAV, due to deployment of a web browser is distinctly

different depending on which web browser is in use.

Safari is clearly superior to the other three browsers.

However, there is a question of whether it is reason-

able to group the data from Internet Explorer versions

6, 7, and 8 together since each version might have

distinctly different values for the model parameters

and thus different AAV metric values. So we further

decomposed Internet Explorer, and recalculated the

AAV for each version. Grouping the three versions

together results in a higher overall AAV because the

sets of vulnerabilities are not independent; a vulner-

ability may affect one or more major versions of the

browser. This in turn affects the sampling of report

rate, announcement rate, and lifespan.

Similar to Fig. 6 the simulation results for Internet

Explorer versions 6, 7, and 8 are shown in Fig. 7. The

Figure 7. Days with given number of vulnerabilities
(MS IE)

Figure 8. Vulnerability Free Days (VFD), as a
function of lifespans

AAV estimate was 20.9 for Internet Explorer version

6, 12.2 for Internet Explorer version 7, and 13.5 for

Internet Explorer version 8. Internet Explorer 6 is

clearly the poorest performer according to the AAV

estimates. This is in line with the general security com-

munity expectations. The cause for Internet Explorer

6 showing so poorly while versions 7 and 8 are have

quite similar AAV values is unknown. We speculate

that the difference lies in the fact that Internet Explorer

7 and 8 have more common code than either have with

version 6. Also, the Microsoft Security Development

Life Cycle became a mandatory policy at Microsoft in

2004 (three years after the release of IE6, 2001, and

two years before IE7, 2006) [6].

For estimating the VFD metric, the arrival rate of an-

nouncements and number of vulnerabilities announced

per announcement are random variables distributed as

described in Section 4.1.3. In Fig. 8 the lifespan of

vulnerabilities was varied from 1 day (vulnerabilities

are addressed practically as soon as they are reported)

to 182 days. The lifespan is varied along the horizontal

axis, and the percentage of vulnerability free days is

shown on the vertical axis. Our goal was to examine

the behavior of the VFD metric as the result of

different vulnerability lifespans for products.

The results are provided for Safari, Chrome, Fire-



Table 6. Comparison of simplified calculation of
AAV to simulated.

Simulated Short Cut

Product AAV AAV % Error

MS Internet Explorer 23.2 24.6 6.09%

Mozilla Firefox 23.9 23.9 0.01%

Google Chrome 19.1 19.2 0.34%

Apple Safari 9.55 9.56 0.10%

fox, and Internet Explorer (versions 6, 7, and 8 are

treated as an aggregate since we are examining vendor

behavior). The most interesting result is that even for

a vulnerability lifespan of 45 days, the percent of days

which are vulnerability free are less than 20% for

Safari and less than 6% for the three other browsers.

Even Safari, the best performing browser as judged by

this metric, does not do well. When the lifespan is the

length of those we actually measured, approximately

75 days for Safari and 146 days for Internet Explorer,

the VFD for all browsers is less than 10%. A poor

performance by all browsers.

4.4. Simplification of Metrics Calculations

Both the AAV and VFD metrics could be used by

end-users when making software product purchasing or

allowed use decisions. However, to gain use, they need

to be able to be quickly calculated when the proper

information is available. For end-users who are unable

to deploy a simulation to calculate AAV and VFD it

would be useful if there were short cut calculations to

make first order estimates of the metrics. We formu-

lated two short cuts and compared the results to those

from the simulation. The formulas may be found in (1)

and (2).

AAV =
(Average Lifespan)(Average Reported)

Average report rate
(1)

V FD = (1− e−1)AAV ≈ 0.632AAV (2)

Table 6 shows the result of using the simulation

data versus the simplified calculation using (1). The

simplified version does a reasonable job of estimating

the results of the simulation and is easy calculated

directly from available data. The worst estimation per-

formance from Table 6 is Internet Explorer (6% error),

yet even this calculation is less than 1.5 vulnerabilities

in magnitude.

The idea behind using AAV to compute VFD is from

a software vendor point of view; namely, a vendor has

some control over the number of developers assigned

to addressing vulnerability reports. By adjusting the
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Figure 9. Estimation of VFD metric using shortcut
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speed with which vulnerabilities are patched, a vendor

can pick a target VFD probability and find the average

lifespan needed to achieve it.

Fig. 9 displays the simulated versus estimated VFD

values. Ideally, the lines for each product would follow

the line y = x; the departure from this is the estimation

error. Generally, the curves follow a linear shape

meaning that the first order effects of the simulation

are captured by the estimation. The model fits well the

behavior of VFD for Internet Explorer and Safari and

somewhat less for Chrome and Firefox.

5. Using the Metrics

Each of the stakeholders described in Section 2 can

take advantage of the metrics. The most obvious use is

for end-users making software usage decisions. These

metrics, along with required features, could form the

basis for choosing to use one software product versus

another.

Vendors could rank themselves and use the met-

rics as a benchmark to compare themselves against

other vendors. Internally, product groups can compare

themselves with other product groups within the same

vendor. Just as companies doing hazardous work strive

for long stretches with no safety accidents, striving

for high vulnerability free days or low average active

vulnerabilities could be a development goal itself.

The last group is vulnerability researchers. Their

motives for finding security vulnerabilities in the first

place is not well understood. However, these are the

individuals that currently, and can in the future, help

keep the vendors honest. The researchers know when

they discovered a vulnerability and more importantly

when they reported it to the vendor. They are also best

positioned to determine whether a particular patch or

solution fixes the problem. Currently, estimating VFD



and AAV requires no help from software vendors, but

the estimates are not as precise as could be with more

comprehensive data.

6. Related Work

Software life cycle metrics are a well studied aspect

of development. These metrics concentrate on the rate

at which defects are detected in the various stages of

the life cycle of software. Less well understood are

metrics for the security vulnerability life cycle.

Several approaches to understanding the life cycle of

vulnerabilities have been undertaken over the past few

years. The approaches fall mostly into two methods:

examining one or a few software packages in detail or

looking for large scale trends.

Ozment and Schechter [4], for example falls into

the former category. They examined the discovery

of vulnerabilities in the OpenBSD operating system

across several years and versions to determine whether

it is getting fundamentally more secure over time.

Also in this category is Schryen, who exam-

ined 17 different products (open source and closed

source) [13]. This work concentrated on the question

of whether open source products are more secure than

closed source products. Schryen concludes that there

is no empirical evidence that open source products and

closed source products differ significantly. Comparing

Mozilla Firefox (open source) against Internet Explorer

(closed source) based on the AAV and VFD, the same

conclusion might be drawn.

Frei et al. is an example of the latter category where

all vulnerabilities in the NVD and other sources are

examined to find global trends [10]. This work does

not help, though, when considering individual products

or vendors and comparing them.

In [2], Arnold, et al. examined a single product:

the Linux kernel. They found a significant number of

software bugs that were later discovered to be vulnera-

bilities. These delayed impact vulnerabilities highlight

the difficulties in obtaining accurate and verifiable

dates for discovery of vulnerabilities. In the case of

delayed impact vulnerabilities, the discoverer either did

not check whether a bug was also a vulnerability or its

impact was not realized until well after the bug was

reported.

More recently, Clark et al. took a new approach

where the first four vulnerabilities for a particular

release of a particular piece of software were exam-

ined [11]. Using this approach, they claim that extrinsic

properties to software development are more indicative

of vulnerability discovery than are intrinsic properties

like software quality. Their approach is applied across

vendors, open source versus closed source, etc.

Arora et al. examined the vulnerability life cycle by

concentrating on an optimal policy for disclosure [1].

Their work provides the model used for discussion of

the life cycle in Section 1. However, the approach of

optimizing the disclosure policy based on economic

factors relies on many variables which are simply not

credibly known.

Our approach differs in that we are not wholly inter-

ested in the life cycle. Instead, we examined a method

for ranking products across vendors or products within

a single vendor on the basis of their raw number of

vulnerabilities and the speed with which they address

them. Our result thus far has been to demonstrate

the applicability of the metrics against a small set of

products.

As far as vulnerability metrics are concerned, several

reports concentrate on the total number of vulnerabili-

ties announced over a given time (per year or per half

year) and the number of fixed vulnerabilities over the

same time for example: [14], [15]. At a gross level,

this information is similar to our AAV metric, but it is

not as granular. A vulnerability can last for a year or a

day between report and patch and the total announced

minus the number fixed will stay the same using this

type of counting. The AAV metric takes both the total

number of announced vulnerabilities and their lifespan

into account in per day units.

Finally, an interesting metric was proposed by Acer

and Jackson, which attempts to combine: patch deploy-

ment, vulnerability severity, and user-installed browser

plug-ins [16]. The authors gather “user-agent” strings

reported by browsers visiting a site created by the

authors. From this, the number of users who are

not completely up to date with patches are counted,

and the “best” browser is the one with the fewest

number of users who are not fully patched. However,

this method depends on random sampling (possibly

achievable with strategically placed collectors) and

only addresses software which report complete version

information. For non-browser products, it is not clear

how measurements could be conducted, and even for

browsers, the authors found that Internet Explorer does

not report all of the necessary information. Further, we

examined whether vulnerability lifespan and severity

(CVSS rank) were independent and we failed to reject

that hypothesis (e.g. p = 0.12 for MS IE).

7. Conclusions and Future Work

Two new software vulnerability exposure metrics

were proposed with the end-user in mind. Both Vulner-



ability Free Days and Average Active Vulnerabilities

were demonstrated in a case study of the four browsers,

Safari, Chrome, Firefox, and Internet explorer. Esti-

mation values for the metrics were generated through

simulation. Short cut estimations were shown to be

practical. Based on the derived exposure metrics for

each browser, there are large differences in vulnerabil-

ity exposure, with Safari having the lowest exposure.

The exposure metrics are sensitive to both lifespans

and the number of vulnerabilities being discovered and

reported. So Firefox which produces patches quickest

still has one of the worst vulnerability exposures

because so many vulnerabilities are discovered and re-

ported. It was also noted that it may not be realistic for

any of the browsers to get to even 50% Vulnerability

Free Days.

Characterization of the lifespans, vulnerability an-

nouncement rates, and the number of vulnerabilities

per announcement is continuing as more data is col-

lected and more sophisticated statistical methods are

used. The two vulnerability exposure metrics, Vulner-

ability Free Days and Average Active Vulnerabilities,

might be more practical for end-users in a slightly

modified disclosure process.

We have begun investigation into a disclosure pro-

cess which emphasizes the needs of the end-users,

the diversity of end-users and software product ven-

dors, and the value of transparency. We also intend

to explore and develop a recommended disclosure

process for critical infrastructure control systems based

on these metrics and the unique aspects of control

systems. In all of the new disclosure processes trans-

parency is a critical element. Each process demands

that the requisite data be free and easily accessible to

end users. There appear to be mechanisms that make

this attainable.
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